
YARsync
Release 0.2.1

Yaroslav Nikitenko

Mar 28, 2023

DOCUMENTATION:

1 Introduction 1
1.1 Installation . 1
1.2 Design and features . 2
1.3 Commands . 2
1.4 Requirements and limitations . 3
1.5 Safety . 3
1.6 Documentation . 3
1.7 Thanks . 3

2 Manual 19

3 Advanced 31
3.1 Usage tips . 31
3.2 Development . 31
3.3 Hard links . 31
3.4 rsync limitations . 32
3.5 Alternatives . 32

i

ii

CHAPTER

ONE

INTRODUCTION

Yet Another Rsync is a file synchronization and backup tool. It can be used to synchronize data between different hosts
or locally (for example, to a backup drive). It provides a familiar git command interface while working with files.

YARsync is a Free Software project covered by the GNU General Public License version 3.

1.1 Installation

yarsync is packaged for Debian/Ubuntu.

For Arch Linux, install the yarsync package from AUR. Packages for other distributions are welcome.

For an installation from PyPI, run

pip3 install yarsync

Since there is no general way to install a manual page for a Python package, one has to do it manually. For example,
run as a superuser:

wget https://github.com/ynikitenko/yarsync/raw/master/docs/yarsync.1
gzip yarsync.1
mv yarsync.1.gz /usr/share/man/man1/
mandb

Make sure that the manual path for your system is correct. The command mandb updates the index caches of manual
pages.

One can also install the most recent program version from GitHub. It incorporates latest improvements, but at the same
time is less stable (new features can be changed or removed).

git clone https://github.com/ynikitenko/yarsync.git
pip3 install -e yarsync

This installs the yarsync executable to ~/.local/bin, and does not require modifications of PYTHONPATH. After that,
one can pull the repository updates without reinstallation.

To uninstall, run

pip3 uninstall yarsync

and remove the cloned repository.

1

https://aur.archlinux.org/packages/yarsync
https://pypi.org/project/yarsync/
https://github.com/ynikitenko/yarsync

YARsync, Release 0.2.1

1.2 Design and features

yarsync can be used to manage hierarchies of unchanging files, such as music, books, articles, photographs, etc. Its
final goal is to have the same state of files across different computers. It also allows to store backup copies of data and
easily copy, update or recover that. yarsync is

distributed
There is no central host or repository for yarsync. If different replicas diverge, the program assists the user to
merge the repositories manually.

efficient
The program is run only on user demand, and does not consume system resources constantly. Already transferred
files will never be transmitted again. This allows the user to rename or move files or whole directories without
any costs, driving constant improvements on the repository.

non-intrusive
yarsync does nothing to user data. It has no complicated packing or unpacking. All user data and program
configuration are stored as usual files in the file system. If one decides to stop using yarsync, they can simply
remove the configuration directory at any time.

simple
yarsync does not implement complicated file transfer algorithms, but uses an existing, widely accepted and
tested tool for that. User configuration is stored in simple text files, and repository snapshots are usual directories,
which can be modified, copied or browsed from a file manager. All standard command line tools can be used in
the repository, to assist its recovery or to allow any non-standard operations (for the users who understand what
they do). Read the yarsync documentation to understand its (simple) design.

safe
yarsync does its best to preserve user data. It always allows one to see what will be done before any actual
modifications (–dry-run). It is its advantage compared to continous synchronization tools, that may be dangerous
if local repository gets corrupt (e.g. encrypted by a trojan). Removed files are stored in older commits (until the
user explicitly removes those).

1.3 Commands

checkout
clone
commit
diff
init
log
pull
push
remote
show
status

See yarsync --help for full command descriptions and options.

2 Chapter 1. Introduction

YARsync, Release 0.2.1

1.4 Requirements and limitations

yarsync is a Python wrapper (available for Python>=3.6) around rsync and requires a file system with hard links.
Since these are very common tools, this means that it can easily run on any UNIX-like system. Moreover, yarsync is
not required to be installed on the remote host: it is sufficient for rsync to be installed there.

In particular, rsync can be found:

• installed on most GNU/Linux distributions,

• installed on Mac OS,

• can be installed on Windows.

yarsync runs successfully on Linux. Please report to us if you have problems (or success) running it on your system.

1.5 Safety

yarsync has been used by the author for several years without problems and is tested. However, any data synchroniza-
tion may lead to data loss, and it is recommended to have several data copies and always do a –dry-run (-n) first before
the actual transfer.

1.6 Documentation

For the complete documentation, read the installed or online manual.

For more in-depth topics or alternatives, see details.

On the repository github, release notes can be found. On github pages there is the manual for yarsync 0.1.

An article in Russian that deals more with yarsync internals was posted on Habr.

1.7 Thanks

A good number of people have contributed to the improvement of this software. I’d like to thank Nilson Silva for
packaging yarsync for Debian, Mikhail Zelenyy from MIPT NPM for the explanation of Python entry points, Jason
Ryan and Matthew T Hoare for the inspiration to create a package for Arch, Scimmia for a comprehensive review and
suggestions for my PKGBUILD, Open Data Russia chat for discussions about backup safety, Habr users and editors,
and, finally, to the creators and developers of git and rsync.

1.7.1 NAME

yarsync - a file synchronization and backup tool

1.4. Requirements and limitations 3

https://eshop.macsales.com/blog/45185-mac-101-learn-the-power-of-rsync-for-backup-remote-archive-systems/
https://superuser.com/questions/300263/how-to-use-rsync-from-windows-pc-to-remote-linux-server
https://yarsync.readthedocs.io/en/latest/yarsync.1.html
https://yarsync.readthedocs.io/en/latest/details.html
https://github.com/ynikitenko/yarsync/blob/master/NEWS.rst
https://ynikitenko.github.io/yarsync/man
https://habr.com/ru/post/662163/
https://npm.mipt.ru/youtrack/articles/GENERAL-A-87/

YARsync, Release 0.2.1

1.7.2 SYNOPSIS

yarsync [-h] [–config-dir DIR] [–root-dir DIR] [-q | -v] command [args]

1.7.3 DESCRIPTION

Yet Another Rsync stores rsync configuration and synchronizes repositories with the interface similar to git. It is
efficient (files in the repository can be removed and renamed freely without additional transfers), distributed (several
replicas of the repository can diverge, and in that case a manual merge is supported), safe (it takes care to prevent data
loss and corruption) and simple (see this manual).

1.7.4 QUICK START

To create a new repository, enter the directory with its files and type

yarsync init

This operation is safe and will not affect existing files (including configuration files in an existing repository). Alterna-
tively, run init inside an empty directory and add files afterward. To complete the initialization, make a commit:

yarsync commit -m "Initial commit"

commit creates a snapshot of the working directory, which is all files in the repository except yarsync configuration
and data. This snapshot is very small, because it uses hard links. To check how much your directory size has changed,
run du(1).

Commit name is the number of seconds since the Epoch (integer Unix time). This allows commits to be ordered in
time, even for hosts in different zones. Though this works on most Unix systems and Windows, the epoch is platform
dependent.

After creating a commit, files can be renamed, deleted or added. To see what was changed since the last commit, use
status. To see the history of existing commits, use log.

Hard links are excellent at tracking file moves or renames and storing accidentally removed files. Their downside is
that if a file gets corrupt, this will apply to all of its copies in local commits. The 3-2-1 backup rule requires to have at
least 3 copies of data, so let us add a remote repository “my_remote”:

yarsync remote add my_remote remote:/path/on/my/remote

For local copies we still call the repositories “remote”, but their paths would be local:

yarsync remote add my_drive /mnt/my_drive/my_repo

This command only updated our configuration, but did not make any changes at the remote path (which may not exist).
To make a copy of our repository, run

yarsync clone new-replica-name host:/mnt/my_drive/my_repo

clone copies all repository data (except configuration files) to a new replica with the given name and adds the new
repository to remotes.

To check that we set up the repositories correctly, make a dry run with ‘-n’:

yarsync push -n new-replica-name

4 Chapter 1. Introduction

YARsync, Release 0.2.1

If there were no errors and no file transfers, then we have a functioning remote. We can continue working locally,
adding and removing files and making commits. When we want to synchronize repositories, we push the changes to
or pull them from a remote (first with a –dry-run). This is the recommended workflow, and if we work on different
repositories in sequence and always synchronize changes, our life will be easy. Sometimes, however, we may forget
to synchronize two replicas and they will end up in a diverged state; we may actually change some files or find them
corrupt. Solutions to these problems involve user decisions and are described in pull and push options.

1.7.5 OPTION SUMMARY

–help, -h show help message and exit
–config-dir=DIR path to the configuration directory
–root-dir=DIR path to the root of the working directory
–quiet, -q decrease verbosity
–verbose, -v increase verbosity
–version, -V print version

1.7.6 COMMAND SUMMARY

checkout restore the working directory to a commit
clone clone a repository
commit commit the working directory
diff print the difference between two commits
init initialize a repository
log print commit logs
pull get data from a source
push send data to a destination
remote manage remote repositories
show print log messages and actual changes for commit(s)
status print updates since last commit

1.7.7 OPTIONS

–help, -h : Prints help message and exits. Default if no arguments are given. After a command name, prints help for
that command.

–config-dir=DIR : Provides the path to the configuration directory if it is detached. Both –config-dir and –root-dir
support tilde expansion for user’s home directory. See SPECIAL REPOSITORIES for usage details.

–root-dir=DIR : Provides the path to the root of the working directory for a detached repository. Requires –config-dir.
If not set explicitly, the default working directory is the current one.

–quiet, -q : Decreases verbosity. Does not affect error messages (redirect them if needed).

–verbose, -v : Increases verbosity. May print more rsync commands and output. Conflicts with –quiet.

1.7. Thanks 5

YARsync, Release 0.2.1

–version, -V : Prints the yarsync version and exits. If –help is given, it takes precedence over –version.

1.7.8 COMMANDS

All commands support the –help option. Commands that can change a repository also support the –dry-run option.

–dry-run, -n : Prints what will be transferred during a real run, but does not make any changes.

–help, -h : Prints help for a command or a subcommand.

1.7.9 checkout

yarsync checkout [-h] [-n] commit

Restores the working directory to its state during commit. WARNING: this will overwrite the working directory. Make
sure that all important data is committed. Make a dry run first with -n.

If not the most recent commit was checked out, the repository HEAD (in git terminology, see git-checkout(1)) becomes
detached, which prevents such operations as pull or push. To advance the repository to its correct state, check out the
last commit or make a new one.

commit : The commit name (as printed in log or during commit).

1.7.10 clone

yarsync clone [-h] name path|parent-path

One can clone from within an existing repository to parent-path or clone from a repository at path. In both cases a
new directory with the repository is created, having the same name as the original repository folder. If that directory
already exists, clone will fail (several safety checks are being made). The local repository (origin or clone) will add
another one as a remote.

Note that only data (working directory, commits, logs and synchronization information, not configuration files) will be
cloned. This command will refuse to clone from a repository with a filter (see SPECIAL REPOSITORIES).

parent-path is useful when we want to clone several repositories into one directory. It allows us to use the same
command for each of them (manually or with mr(1)). If one needs to have a different directory name for a repository,
they can rename it manually (we don’t require, but strongly encourage having same directory names for all replicas).

Positional arguments

name : Name of the new repository.

path : Path to the source repository (local or remote). Trailing slash is ignored.

parent-path : Path to the parent directory of the cloned repository (local or remote). Trailing slash is ignored.

6 Chapter 1. Introduction

YARsync, Release 0.2.1

1.7.11 commit

yarsync commit [-h] [-m message] [–limit number]

Commits the working directory (makes its snapshot). See QUICK START for more details on commits.

–limit=number : Maximum number of commits. If the current number of commits exceeds that, older ones are removed
during commit. See SPECIAL REPOSITORIES for more details.

message : Commit message (used in logs). Can be empty.

1.7.12 diff

yarsync diff [-h] commit [commit]

Prints the difference between two commits (from old to the new one, the order of arguments is unimportant). If the
second commit is omitted, compares commit to the most recent one. See status for the output format.

commit : Commit name.

1.7.13 init

yarsync init [-h] [reponame]

Initializes a yarsync repository in the current directory. Creates a configuration folder with repository files. Existing
configuration and files in the working directory stay unchanged. Create a first commit for the repository to become
fully operational.

reponame : Name of the repository. If not provided on the command line, it will be prompted.

1.7.14 log

yarsync log [-h] [-n number] [-r]

Prints commit logs (from newest to oldest), as well as synchronization information when it is available. To see changes
in the working directory, use status.

Options

–max-count=number, -n : Maximum number of logs shown.

–reverse, -r : Reverse log order.

Example

To print information about the three most recent commits, use

yarsync log -n 3

1.7. Thanks 7

YARsync, Release 0.2.1

1.7.15 pull

yarsync pull [-h] [-f | –new | -b | –backup-dir DIR] [-n] source

Gets data from a remote source. The difference between pull and push is mostly only the direction of transfer.

pull and push bring two repositories into the same state. They synchronize the working directory, that is they add to
the destination new files from source, remove those missing on source and do all renames and moves of previously
committed files efficiently. This is done in one run, and these changes apply also to logs, commits and synchronization.
In most cases, we do not want our existing logs and commits to be removed though. By default, several checks are
made to prevent data loss:

- local has no uncommitted changes,
- local has not a detached HEAD,
- local is not in a merging state,
- destination has no commits missing on source.

If any of these cases is in effect, no modifications will be made. Note that the remote may have uncommitted changes
itself: always make a dry run with -n first!

To commit local changes to the repository, use commit. HEAD commit could be changed during checkout (see its
section for the solutions). If the destination has commits missing on source, there are two options: to –force changes
to the destination (removing these commits) or to merge changes inside the local repository with pull –new.

If we pull new commits from the remote, this will bring repository into a merging state. Merge will be done automati-
cally if the last remote commit is among local ones (in that case only some older commits were transferred from there).
If some recent remote commits are not present locally, however, this means that histories of the repositories diverged,
and we will need to merge them manually. After we have all local and remote commits and the union of the working
directories in our local repository, we can safely choose the easiest way for us to merge them. To see the changes, use
status and log. For example, if we added a file in a remote_commit before and it was added now, we can just commit
the changes. If we have made many local changes, renames and removals since then, we may better checkout our latest
commit (remember that all files from the working directory are present in commits, so it is always safe) and link the
new file to the working directory:

ln .ys/commits/<remote_commit>/path/to/file .

(it can be moved to its subdirectory without the risk of breaking hard links). If the remote commit was actually large,
and local changes were recent but small, then we shall check out the remote commit and apply local changes by hand.
After our working directory is in the desired state, we commit changes and the merge is finished. The result shall be
pushed to the remote without problems.

pull options

–new : Do not remove local data that is missing on source. While this option can return deleted or moved files back to
the working directory, it also adds remote logs and commits that were missing here (for example, old or unsynchronized
commits). A forced push to the remote could remove these logs and commits, and this option allows one to first pull
them to the local repository.

After **pull \--new** the local repository can enter a merging state.

See pull description for more details.

–backup, -b : Changed files in the working directory are renamed (appended with ‘~’). See –backup-dir for more
details.

8 Chapter 1. Introduction

YARsync, Release 0.2.1

–backup-dir DIR : Changed local files are put into a directory DIR preserving their relative paths. DIR can be an
absolute path or relative to the root of the repository. In contrast to –backup, –backup-dir does not change resulting
file names.

This option is convenient for large file trees,

because it recreates the existing file structure of the repository (one doesn’t have to search for new backup files in all
subdirectories). For current rsync version, the command

yarsync pull --backup-dir BACKUP <remote>

will copy updated files from the remote

and put them into the directory “BACKUP/BACKUP” (this is how rsync works). To reduce confusion, make standard
pull first (so that during the backup there are only file updates).

This option is available only for **pull**,

because it is assumed that the user will apply local file changes after backup. For example, suppose that after a pull
–backup one gets files a and a~ in the working directory. One should first see, which version is correct. If it is the
local file a~, then the backup can be removed:

mv a~ a

By local we mean the one hard linked with local commits

(run ls -i to be sure). If the remote version is correct though, you need first to overwrite the local version not breaking
the hard links. This can be done with an rsync option “–inplace”:

rsync --inplace a a~
mv a~ a
check file contents and the links
ls -i a .ys/commits/*/a

For a **\--backup-dir** and for longer paths these commands will be longer.

Finally, if you need several versions, just save one of the files under a different name in the repository.

After you have fixed all corrupt files, push them back to the remote.

pull and push options

–force, -f : Updates the working directory, removing commits and logs missing on source. This command brings
two repositories to the nearest possible states: their working directories, commits and logs become the same. While
working directories are always identical after pull or push (except for some of the pull options), yarsync generally
refuses to remove existing commits or logs - unless this option is given. Use it if the destination has really unneeded
commits or just remove them manually (see FILES for details on the commit directory). See also pull –new on how to
fetch missing commits.

1.7. Thanks 9

YARsync, Release 0.2.1

1.7.16 push

yarsync push [-h] [-f] [-n] destination

Sends data to a remote destination. See pull for more details and common options.

1.7.17 remote

yarsync remote [-h] [-v] [command]

Manages remote repositories configuration. By default, prints existing remotes. For more options, see .ys/config.ini in
the FILES section.

-v : Verbose. Prints remote paths as well.

add

yarsync remote add [-h] repository path

Adds a new remote. repository is the name of the remote in local yarsync configuration (as it will be used later during
pull or push). path has a standard form [user@]host:[path] for an actually remote host or it can be a local path. Since
yarsync commands can be called from any subdirectory, local path should be absolute. Tilde for user’s home directory
‘~’ in paths is allowed.

rm

yarsync remote rm [-h] repository

Removes an existing repository from local configuration.

show

Prints remote repositories. Default.

1.7.18 show

yarsync show [-h] commit [commit . . .]

Prints log messages and actual changes for commit(s). Changes are shown compared to the commit before commit. For
the output format, see status. Information for several commits can be requested as well.

commit : Commit name.

1.7.19 status

yarsync status [-h]

Prints working directory updates since the last commit and the repository status. If there were no errors, this command
always returns success (irrespective of uncommitted changes).

10 Chapter 1. Introduction

YARsync, Release 0.2.1

Output format of the updates

The output for the updates is a list of changes, including attribute changes, and is based on the format of rsync –itemize-
changes. For example, a line

.d..t...... programming/

means that the modification time ‘t’ of the directory ‘d’ programming/ in the root of the repository has changed (files
were added or removed from that). All its other attributes are unchanged (‘.’).

The output is an 11-letter string of the format “YXcstpoguax”, where ‘Y’ is the update type, ‘X’ is the file type, and
the other letters represent attributes that are printed if they were changed. For a newly created file these would be ‘+’,
like

>f+++++++++ /path/to/file

The attribute letters are: checksum, size, modification time, permissions, owner and group. u can be in fact use
(access) or creation time, or both. a stands for ACL, and x for extended attributes. Complete details on the output
format can be found in the rsync(1) manual.

1.7.20 SPECIAL REPOSITORIES

A detached repository is one with the yarsync configuration directory outside the working directory. To use such
repository, one must provide yarsync options –config-dir and –root-dir with every command (alias(1p) may be of
help). To create a detached repository, use init with these options or move the existing configuration directory manually.
For example, if one wants to have several versions of static Web pages, they may create a detached repository and publish
the working directory without the Web server having access to the configuration. Alternatively, if one really wants to
have both a continuous synchronization and yarsync backups, they can move its configuration outside, if that will work.
Commits in such repositories can be created or checked out, but pull or push are currently not supported (one will have
to synchronize them manually). A detached repository is similar to a bare repository in git, but usually has a working
directory.

A repository with a filter can exclude (disable tracking) some files or directories from the working directory. This
may be convenient, but makes synchronization less reliable, and such repository can not be used as a remote. See
rsync-filter in the FILES section for more details.

A repository can have a commit limit. The maximum number of commits can be set during commit. pull and push do
not check for missing commits on the destination when we are in a repository with commit limit. It makes a repository
with commit limit more like a central repository. If we have reached the maximum number of commits, older ones are
deleted during a new commit. Commit limit is stored in .ys/COMMIT_LIMIT.txt. It can be changed or removed at
any time. Commit limit was introduced in yarsync v0.2 and was designed to help against the problem of too many
hard links (if it exists).

1.7.21 FILES

All yarsync repository configuration and data is stored in the hidden directory .ys under the root of the working direc-
tory. If the user no longer wants to use yarsync and the working directory is in the desired state, they can safely remove
the .ys directory.

Apart from the working directory, only commits, logs and synchronization data are synchronized between the reposi-
tories. Each repository has its own configuration and name.

1.7. Thanks 11

YARsync, Release 0.2.1

User configuration files

.ys/config.ini : Contains names and paths of remote repositories. This file can be edited directly or with remote
commands according to user’s preference.

yarsync supports synchronization

only with existing remotes. A simple configuration for a remote “my_remote” could be:

[my_remote]
path = remote:/path/on/my/remote

Several sections can be added for more remotes.

An example (non-effective) configuration is created during init. Note that comments in config.ini can be erased during
remote {add,rm}.

Since removable media or remote hosts can change their paths

or IP addresses, one may use variable substitution in paths:

[my_drive]
path = $MY_DRIVE/my_repo

For the substitutions to take the effect,

export these variables before run:

$ export MY_DRIVE=/run/media/my_drive
$ yarsync push -n my_drive

If we made a mistake in the variable or path,

it will be shown in the printed command. Always use –dry-run first to ensure proper synchronization.

Another **yarsync** remote configuration option is **host**.

If both path and host are present, the effective path will be their concatenation “<host>:<path>”. Empty host means
local host and does not prepend the path.

It is possible to set default **host** for each section

from the section name. For that, add a default section with an option host_from_section_name:

[DEFAULT]
host_from_section_name

Empty lines and lines starting with \'**#**\' are ignored.

Section names are case-sensitive. White spaces in a section name will be considered parts of its name. Spaces around
‘=’ are allowed. Full syntax specification can be found at https://docs.python.org/3/library/configparser.html.

.ys/repo_<name>.txt : Contains the repository name, which is used in logs and usually should coincide with the remote
name (how local repository is called on remotes). The name can be set during init or edited manually.

12 Chapter 1. Introduction

https://docs.python.org/3/library/configparser.html

YARsync, Release 0.2.1

Each repository replica must have a unique name.

For example, if one has repositories “programming/” and “music/” on a laptop “my_host”, their names would probably
be “my_host”, and the names of their copies on an external drive could be “my_drive” (this is different from git, which
uses only the author’s name in logs).

Note that **clone** from inside a repository

for technical reasons creates a temporary file with the new repository name (which is also written in
CLONE_TO_<name>.txt). If these files due to some errors remain on the system, they can be safely removed.

.ys/rsync-filter : Contains rsync filter rules, which effectively define what data belongs to the repository. The rsync-
filter does not exist by default, but can be added for flexibility.

For example, the author has a repository \"~/work\",

but wants to keep his presentations in “tex/” in a separate repository. Instead of having a different directory
“~/work_tex”, he adds such rules to rsync-filter:

all are in git repositories
- /repos
take care to sync separately
- /tex

In this way, \"~/work/tex\" and contained git repositories will be excluded

from “~/work” synchronization. Lines starting with ‘#’ are ignored, as well as empty lines. To complicate things, one
could include a subdirectory of “tex” into “work” with an include filter ‘+’. For complete details, see FILTER RULES
section of rsync(1).

While convenient for everyday use, filters make backup more difficult.

To synchronize a repository with them, one has to remember that it has subdirectories that need to be synchronized too.
If the remote repository had its own filters, that would make synchronization even more unreliable. Therefore filters
are generally discouraged: pull and push ignore remote filters (make sure you synchronize only from a repository with
filters), while clone refuses to copy from a repository with rsync-filter.

yarsync technical directories

.ys/commits/ : Contains local commits (snapshots of the working directory). If some of the old commits are no longer
needed (there are too many of them or they contain a large file), they can be removed. Make sure, however, that all
remote repositories contain at least some of the present commits, otherwise future synchronization will get complicated.
Alternatively, remove unneeded files or folders manually: commits can be edited, with care taken to synchronize them
correctly.

.ys/logs/ : Contains text logs produced during commit. They are not necessary, so removing any of them will not
break the repository. If one wants to fix or improve a commit message though, they may edit the corresponding log (the
change will be propagated during push). It is recommended to store logs even for old deleted commits, which may be
present on formerly used devices.

.ys/sync/ : Contains synchronization information for all known reposotories. This information is transferred between
replicas during pull, push and clone, and it allows yarsync repositories to better support the 3-2-1 backup rule.
The information is contained in empty files with names of the format commit_repo.txt. Pulling (or cloning) from a
repository does not affect its files and does not update its synchronization information. push (and corresponding clone)
updates synchronization for both replicas. For each repository only the most recent commit is stored. sync directory

1.7. Thanks 13

YARsync, Release 0.2.1

was introduced in yarsync v0.2. See the release notes on how to convert old repositories to the new format or do it
manually, if necessary.

If a replica has been permanently removed, its synchronization data

must be removed manually and propagated with –force.

1.7.22 EXIT STATUS

0 : Success

1 : Invalid option

7 : Configuration error

8 : Command error

9 : System error

2-6,10-14,20-25,30,35 : rsync error

If the command could be run successfully, a zero code is returned. Invalid option code is returned for mistakes in
command line argument syntax. Configuration error can occur when we are outside an existing repository or a yarsync
configuration file is missing. If the repository is correct, but the command is not allowed in its current state (for example,
one can not push or pull when there are uncommitted changes or add a remote with an already present name), the
command error is returned. It is also possible that a general system error, such as a keyboard interrupt, is raised in the
Python interpreter. See rsync(1) for rsync errors.

1.7.23 DIAGNOSTICS

To check that your clocks (used for properly ordering commits) at different hosts are synchronized well enough, run

python -c 'import time; print(time.time())'

To make sure that the local repository supports hard links instead of creating file copies, test it with

du -sh .
du -sh .ys

(can be run during pull or clone if they take too long). The results must be almost the same. If not, you may not use
yarsync on this file system, have large deleted files stored in old commits or you may have subdirectories excluded
with a filter (see SPECIAL REPOSITORIES section).

To test that a particular file “a” was hard linked to its committed versions, run

ls -i a .ys/commits/*/a

If all is correct, their inodes must be the same.

Hard links can be broken in a cloned git repository (as it could happen with yarsync tests before), because git does not
preserve them. To fix hard links for the whole repository, run hardlink(1) in its root.

14 Chapter 1. Introduction

YARsync, Release 0.2.1

1.7.24 SEE ALSO

rsync(1)

The yarsync page is https://github.com/ynikitenko/yarsync.

1.7.25 BUGS

Requires a filesystem with hard links, rsync version at least 3.1.0 (released 28 September 2013) and Python >= 3.6.

Always do a –dry-run before actual changes. Occasionally Python errors are raised instead of correct return codes.
Please report any bugs or make feature requests to https://github.com/ynikitenko/yarsync/issues.

1.7.26 COPYRIGHT

Copyright © 2021-2023 Yaroslav Nikitenko. License GPLv3: GNU GPL version 3 https://gnu.org/licenses/gpl.html.
This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by
law.

1.7.27 Advanced

Usage tips

Since yarsync allows using a command interface similar to git, one can synchronize several repositories simultane-
ously using myrepos.

If new data was added to several repositories simultaneously, commit the changes on one of them and synchronize that
with the another. rsync should link the working directory with commits properly. This may fail depending on how
you actually copied files (they may have changed attributes). In this case, create new commits in both repositories and
manually rename them to be the same. Try to synchronize to see that all is linked properly. For example, when we
move photographs from an SD card, we want to have at least two copies of them. It would be more reliable to copy
data from the original source to two repositories than to push that from one of them to another (possible errors on the
intermediate filesystem increase the risk). Make sure that the two repositories were synchronized beforehand.

Development

Community contributions are very important for free software projects. The best thing for the project on the starting
phase is to spread information and create packages for new operating systems.

yarsync was tested on ext4, NFSv4 and SimFS on Arch Linux and CentOS. Tests on other systems would be useful.

Hard links

The file system must support hard links if you plan to use commits. Multiple hard links are supported by POSIX-
compliant and partially POSIX-compliant operating systems, such as Linux, Android, macOS, and also Windows NT4
and later Windows NT operating systems [Wikipedia].

Notable file systems to support hard links include [hard links and comparison of file systems from Wikipedia]:

• EncFS (an Encrypted Filesystem using FUSE). Note that it doesn’t support hard links when External IV Chaining
is enabled (this is enabled by default in paranoia mode, and disabled by default in standard mode).

• ext2-ext4. Standard on Linux. Ext4 has a limit of 65000 hard links on a file.

1.7. Thanks 15

https://github.com/ynikitenko/yarsync
https://github.com/ynikitenko/yarsync/issues
https://gnu.org/licenses/gpl.html
https://myrepos.branchable.com/
https://en.wikipedia.org/wiki/Hard_link
https://en.wikipedia.org/wiki/Hard_link
https://en.wikipedia.org/wiki/Comparison_of_file_systems#File_capabilities
https://github.com/vgough/encfs/blob/master/encfs/encfs.pod
https://github.com/vgough/encfs/blob/master/encfs/encfs.pod
https://en.wikipedia.org/wiki/Hard_link#Limitations_of_hard_links

YARsync, Release 0.2.1

• HFS+. Standard on Mac OS.

• NTFS. The only Windows file system to support hard links. It has a limit of 1024 hard links on a file.

• SquashFS, a compressed read-only file system for Linux.

Hard links are not supported on:

• FAT, exFAT. These are used on many flash drives.

• Joliet (“CDFS”), ISO 9660. File systems on CDs.

The majority of modern file systems support hard links. A full list of file system capabilities can be found on Wikipedia.

One can copy data to file systems without hard links, but this will reduce the functionality of yarsync, and one should
take care not to consume too much disk space if accidentally copying files instead of hard linking.

rsync limitations

• Millions of files will be synced very slowly.

• rsync freezes when encountering too many hard links. Users report problems for repositories of 200 G or
90 GB, with many hard links. For the author’s repository with 30 thousand files (160 thousand with commits)
and 3 Gb of data rsync works fine. If you have a large repository and want to copy it with all hard links, it is
recommended to create a separate partition (e.g. LVM) and copy the filesystem as a whole. You can also remove
some of older backups.

• rsyncmay create separate files instead of hard linking them. It can be fixed quickly using the hardlink executable.

Alternatives

Free software that uses rsync includes:

• Back In Time. See previous snapshots using a GUI.

• Grsync, graphical interface for rsync.

• LuckyBackup. It is written in C++ and is mostly used from a graphical shell.

• rsnapshot, a filesystem snapshot utility. rsnapshotmakes it easy to make periodic snapshots of local machines,
and remote machines over ssh. Files can be restored by the users who own them, without the root user getting
involved.

Other syncronization / backup / archiving software:

• casync is a combination of the rsync algorithm and content-addressable storage. It is an efficient way to deliver
and update directory trees and large images over the Internet in an HTTP and CDN friendly way. Other systems
that use similar algorithms include bup.

• Duplicity backs directories by producing encrypted tar-format volumes and uploading them to a remote or lo-
cal file server. duplicity uses librsync and is space efficient. It supports many cloud providers. In 2021
duplicity supports deleted files, full unix permissions, directories, and symbolic links, fifos, and device files,
but not hard links. It can be run on Linux, MacOS and Windows (under Cygwin).

• Git-annex manages distributed copies of files using git. This is a very powerful tool written in Haskell. It allows
for each file to track the number of backups that contain it and their names, and it allows to plan downloading
of a file to the local storage. This is its author’s use case: “I have a ton of drives. I have a lot of servers. I live
in a cabin on dialup and often have 1 hour on broadband in a week to get everything I need”. I tried to learn
git-annex, it was uneasy , and finally I found that it doesn’t preserve timestamps (because git doesn’t) and
permissions. If that suits you, there is also a list of specialized related software. git-annex allows to use many
cloud services as special remotes, including all rclone remotes.

16 Chapter 1. Introduction

https://en.wikipedia.org/wiki/NTFS
https://en.wikipedia.org/wiki/Comparison_of_file_systems#File_capabilities
https://www.resilio.com/blog/rsync-alternative
https://serverfault.com/questions/363670/rsync-avzhp-follows-hardlinks-instead-of-copying-them-as-hardlinks#comment1252592_363780
https://bugzilla.samba.org/show_bug.cgi?id=10678
https://jak-linux.org/projects/hardlink/
https://en.wikipedia.org/wiki/Rsync#rsync_applications
https://backintime.readthedocs.io/
http://luckybackup.sourceforge.net/manual.html
https://rsnapshot.org/
https://github.com/systemd/casync
https://github.com/systemd/casync#casync--content-addressable-data-synchronizer
https://bup.github.io/
http://www.nongnu.org/duplicity/
https://en.wikipedia.org/wiki/Duplicity_(software)
https://git-annex.branchable.com/
https://git-annex.branchable.com/testimonials/
http://git-annex.branchable.com/tips/centralized_git_repository_tutorial/on_your_own_server/#comment-29cc31b898ba34a1f59a96ba7b001e08
https://git-annex.branchable.com/todo/does_not_preserve_timestamps/
https://git-annex.branchable.com/bugs/assistant_doesn__39__t_sync_file_permissions/
https://git-annex.branchable.com/related_software/
https://git-annex.branchable.com/special_remotes/
https://git-annex.branchable.com/special_remotes/rclone/

YARsync, Release 0.2.1

• Rclone focuses on cloud and other high latency storage. It supports more than 50 different providers. As of 2021,
it doesn’t preserve permissions and attributes.

Continuous synchronization software:

• gut-sync offers a real-time bi-directional folder synchronization.

• Syncthing. A very powerful and developed tool, works on Linux, MacOS, Windows and Android. Mostly uses
a GUI (admin panel is managed through a Web interface), but also has a command line interface.

• Unison is a file-synchronization tool for OSX, Unix, and Windows. It allows two replicas of a collection of files
and directories to be stored on different hosts (or different disks on the same host), modified separately, and then
brought up to date by propagating the changes in each replica to the other (pretty much like other syncronization
tools work).

• Dropbox, Google Drive, Yandex Disk and many other closed-source tools fall into this cathegory.

ArchWiki includes several useful scripts for rsync and a list of its graphical front-ends. It also has a list of cloud
synchronization clients and a list of synchronization and backup programs. Wikipedia offers a comparison of file
synchronization software and a comparison of backup software. Git-annex has a list of git-related tools.

1.7. Thanks 17

https://en.wikipedia.org/wiki/Rclone
https://github.com/tillberg/gut
https://syncthing.net/
https://docs.syncthing.net/users/syncthing.html
https://www.cis.upenn.edu/~bcpierce/unison/
https://wiki.archlinux.org/index.php/Rsync
https://wiki.archlinux.org/index.php/Rsync#Front-ends
https://wiki.archlinux.org/index.php/List_of_applications/Internet#Cloud_synchronization_clients
https://wiki.archlinux.org/index.php/List_of_applications/Internet#Cloud_synchronization_clients
https://wiki.archlinux.org/index.php/Synchronization_and_backup_programs
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_backup_software
https://git-annex.branchable.com/not/

YARsync, Release 0.2.1

18 Chapter 1. Introduction

CHAPTER

TWO

MANUAL

2.0.1 NAME

yarsync - a file synchronization and backup tool

2.0.2 SYNOPSIS

yarsync [-h] [–config-dir DIR] [–root-dir DIR] [-q | -v] command [args]

2.0.3 DESCRIPTION

Yet Another Rsync stores rsync configuration and synchronizes repositories with the interface similar to git. It is
efficient (files in the repository can be removed and renamed freely without additional transfers), distributed (several
replicas of the repository can diverge, and in that case a manual merge is supported), safe (it takes care to prevent data
loss and corruption) and simple (see this manual).

2.0.4 QUICK START

To create a new repository, enter the directory with its files and type

yarsync init

This operation is safe and will not affect existing files (including configuration files in an existing repository). Alterna-
tively, run init inside an empty directory and add files afterward. To complete the initialization, make a commit:

yarsync commit -m "Initial commit"

commit creates a snapshot of the working directory, which is all files in the repository except yarsync configuration
and data. This snapshot is very small, because it uses hard links. To check how much your directory size has changed,
run du(1).

Commit name is the number of seconds since the Epoch (integer Unix time). This allows commits to be ordered in
time, even for hosts in different zones. Though this works on most Unix systems and Windows, the epoch is platform
dependent.

After creating a commit, files can be renamed, deleted or added. To see what was changed since the last commit, use
status. To see the history of existing commits, use log.

Hard links are excellent at tracking file moves or renames and storing accidentally removed files. Their downside is
that if a file gets corrupt, this will apply to all of its copies in local commits. The 3-2-1 backup rule requires to have at
least 3 copies of data, so let us add a remote repository “my_remote”:

19

YARsync, Release 0.2.1

yarsync remote add my_remote remote:/path/on/my/remote

For local copies we still call the repositories “remote”, but their paths would be local:

yarsync remote add my_drive /mnt/my_drive/my_repo

This command only updated our configuration, but did not make any changes at the remote path (which may not exist).
To make a copy of our repository, run

yarsync clone new-replica-name host:/mnt/my_drive/my_repo

clone copies all repository data (except configuration files) to a new replica with the given name and adds the new
repository to remotes.

To check that we set up the repositories correctly, make a dry run with ‘-n’:

yarsync push -n new-replica-name

If there were no errors and no file transfers, then we have a functioning remote. We can continue working locally,
adding and removing files and making commits. When we want to synchronize repositories, we push the changes to
or pull them from a remote (first with a –dry-run). This is the recommended workflow, and if we work on different
repositories in sequence and always synchronize changes, our life will be easy. Sometimes, however, we may forget
to synchronize two replicas and they will end up in a diverged state; we may actually change some files or find them
corrupt. Solutions to these problems involve user decisions and are described in pull and push options.

2.0.5 OPTION SUMMARY

–help, -h show help message and exit
–config-dir=DIR path to the configuration directory
–root-dir=DIR path to the root of the working directory
–quiet, -q decrease verbosity
–verbose, -v increase verbosity
–version, -V print version

20 Chapter 2. Manual

YARsync, Release 0.2.1

2.0.6 COMMAND SUMMARY

checkout restore the working directory to a commit
clone clone a repository
commit commit the working directory
diff print the difference between two commits
init initialize a repository
log print commit logs
pull get data from a source
push send data to a destination
remote manage remote repositories
show print log messages and actual changes for commit(s)
status print updates since last commit

2.0.7 OPTIONS

–help, -h : Prints help message and exits. Default if no arguments are given. After a command name, prints help for
that command.

–config-dir=DIR : Provides the path to the configuration directory if it is detached. Both –config-dir and –root-dir
support tilde expansion for user’s home directory. See SPECIAL REPOSITORIES for usage details.

–root-dir=DIR : Provides the path to the root of the working directory for a detached repository. Requires –config-dir.
If not set explicitly, the default working directory is the current one.

–quiet, -q : Decreases verbosity. Does not affect error messages (redirect them if needed).

–verbose, -v : Increases verbosity. May print more rsync commands and output. Conflicts with –quiet.

–version, -V : Prints the yarsync version and exits. If –help is given, it takes precedence over –version.

2.0.8 COMMANDS

All commands support the –help option. Commands that can change a repository also support the –dry-run option.

–dry-run, -n : Prints what will be transferred during a real run, but does not make any changes.

–help, -h : Prints help for a command or a subcommand.

2.0.9 checkout

yarsync checkout [-h] [-n] commit

Restores the working directory to its state during commit. WARNING: this will overwrite the working directory. Make
sure that all important data is committed. Make a dry run first with -n.

If not the most recent commit was checked out, the repository HEAD (in git terminology, see git-checkout(1)) becomes
detached, which prevents such operations as pull or push. To advance the repository to its correct state, check out the
last commit or make a new one.

commit : The commit name (as printed in log or during commit).

21

YARsync, Release 0.2.1

2.0.10 clone

yarsync clone [-h] name path|parent-path

One can clone from within an existing repository to parent-path or clone from a repository at path. In both cases a
new directory with the repository is created, having the same name as the original repository folder. If that directory
already exists, clone will fail (several safety checks are being made). The local repository (origin or clone) will add
another one as a remote.

Note that only data (working directory, commits, logs and synchronization information, not configuration files) will be
cloned. This command will refuse to clone from a repository with a filter (see SPECIAL REPOSITORIES).

parent-path is useful when we want to clone several repositories into one directory. It allows us to use the same
command for each of them (manually or with mr(1)). If one needs to have a different directory name for a repository,
they can rename it manually (we don’t require, but strongly encourage having same directory names for all replicas).

Positional arguments

name : Name of the new repository.

path : Path to the source repository (local or remote). Trailing slash is ignored.

parent-path : Path to the parent directory of the cloned repository (local or remote). Trailing slash is ignored.

2.0.11 commit

yarsync commit [-h] [-m message] [–limit number]

Commits the working directory (makes its snapshot). See QUICK START for more details on commits.

–limit=number : Maximum number of commits. If the current number of commits exceeds that, older ones are removed
during commit. See SPECIAL REPOSITORIES for more details.

message : Commit message (used in logs). Can be empty.

2.0.12 diff

yarsync diff [-h] commit [commit]

Prints the difference between two commits (from old to the new one, the order of arguments is unimportant). If the
second commit is omitted, compares commit to the most recent one. See status for the output format.

commit : Commit name.

2.0.13 init

yarsync init [-h] [reponame]

Initializes a yarsync repository in the current directory. Creates a configuration folder with repository files. Existing
configuration and files in the working directory stay unchanged. Create a first commit for the repository to become
fully operational.

reponame : Name of the repository. If not provided on the command line, it will be prompted.

22 Chapter 2. Manual

YARsync, Release 0.2.1

2.0.14 log

yarsync log [-h] [-n number] [-r]

Prints commit logs (from newest to oldest), as well as synchronization information when it is available. To see changes
in the working directory, use status.

Options

–max-count=number, -n : Maximum number of logs shown.

–reverse, -r : Reverse log order.

Example

To print information about the three most recent commits, use

yarsync log -n 3

2.0.15 pull

yarsync pull [-h] [-f | –new | -b | –backup-dir DIR] [-n] source

Gets data from a remote source. The difference between pull and push is mostly only the direction of transfer.

pull and push bring two repositories into the same state. They synchronize the working directory, that is they add to
the destination new files from source, remove those missing on source and do all renames and moves of previously
committed files efficiently. This is done in one run, and these changes apply also to logs, commits and synchronization.
In most cases, we do not want our existing logs and commits to be removed though. By default, several checks are
made to prevent data loss:

- local has no uncommitted changes,
- local has not a detached HEAD,
- local is not in a merging state,
- destination has no commits missing on source.

If any of these cases is in effect, no modifications will be made. Note that the remote may have uncommitted changes
itself: always make a dry run with -n first!

To commit local changes to the repository, use commit. HEAD commit could be changed during checkout (see its
section for the solutions). If the destination has commits missing on source, there are two options: to –force changes
to the destination (removing these commits) or to merge changes inside the local repository with pull –new.

If we pull new commits from the remote, this will bring repository into a merging state. Merge will be done automati-
cally if the last remote commit is among local ones (in that case only some older commits were transferred from there).
If some recent remote commits are not present locally, however, this means that histories of the repositories diverged,
and we will need to merge them manually. After we have all local and remote commits and the union of the working
directories in our local repository, we can safely choose the easiest way for us to merge them. To see the changes, use
status and log. For example, if we added a file in a remote_commit before and it was added now, we can just commit
the changes. If we have made many local changes, renames and removals since then, we may better checkout our latest
commit (remember that all files from the working directory are present in commits, so it is always safe) and link the
new file to the working directory:

ln .ys/commits/<remote_commit>/path/to/file .

23

YARsync, Release 0.2.1

(it can be moved to its subdirectory without the risk of breaking hard links). If the remote commit was actually large,
and local changes were recent but small, then we shall check out the remote commit and apply local changes by hand.
After our working directory is in the desired state, we commit changes and the merge is finished. The result shall be
pushed to the remote without problems.

pull options

–new : Do not remove local data that is missing on source. While this option can return deleted or moved files back to
the working directory, it also adds remote logs and commits that were missing here (for example, old or unsynchronized
commits). A forced push to the remote could remove these logs and commits, and this option allows one to first pull
them to the local repository.

After **pull \--new** the local repository can enter a merging state.

See pull description for more details.

–backup, -b : Changed files in the working directory are renamed (appended with ‘~’). See –backup-dir for more
details.

–backup-dir DIR : Changed local files are put into a directory DIR preserving their relative paths. DIR can be an
absolute path or relative to the root of the repository. In contrast to –backup, –backup-dir does not change resulting
file names.

This option is convenient for large file trees,

because it recreates the existing file structure of the repository (one doesn’t have to search for new backup files in all
subdirectories). For current rsync version, the command

yarsync pull --backup-dir BACKUP <remote>

will copy updated files from the remote

and put them into the directory “BACKUP/BACKUP” (this is how rsync works). To reduce confusion, make standard
pull first (so that during the backup there are only file updates).

This option is available only for **pull**,

because it is assumed that the user will apply local file changes after backup. For example, suppose that after a pull
–backup one gets files a and a~ in the working directory. One should first see, which version is correct. If it is the
local file a~, then the backup can be removed:

mv a~ a

By local we mean the one hard linked with local commits

(run ls -i to be sure). If the remote version is correct though, you need first to overwrite the local version not breaking
the hard links. This can be done with an rsync option “–inplace”:

rsync --inplace a a~
mv a~ a
check file contents and the links
ls -i a .ys/commits/*/a

For a **\--backup-dir** and for longer paths these commands will be longer.

Finally, if you need several versions, just save one of the files under a different name in the repository.

24 Chapter 2. Manual

YARsync, Release 0.2.1

After you have fixed all corrupt files, push them back to the remote.

pull and push options

–force, -f : Updates the working directory, removing commits and logs missing on source. This command brings
two repositories to the nearest possible states: their working directories, commits and logs become the same. While
working directories are always identical after pull or push (except for some of the pull options), yarsync generally
refuses to remove existing commits or logs - unless this option is given. Use it if the destination has really unneeded
commits or just remove them manually (see FILES for details on the commit directory). See also pull –new on how to
fetch missing commits.

2.0.16 push

yarsync push [-h] [-f] [-n] destination

Sends data to a remote destination. See pull for more details and common options.

2.0.17 remote

yarsync remote [-h] [-v] [command]

Manages remote repositories configuration. By default, prints existing remotes. For more options, see .ys/config.ini in
the FILES section.

-v : Verbose. Prints remote paths as well.

add

yarsync remote add [-h] repository path

Adds a new remote. repository is the name of the remote in local yarsync configuration (as it will be used later during
pull or push). path has a standard form [user@]host:[path] for an actually remote host or it can be a local path. Since
yarsync commands can be called from any subdirectory, local path should be absolute. Tilde for user’s home directory
‘~’ in paths is allowed.

rm

yarsync remote rm [-h] repository

Removes an existing repository from local configuration.

show

Prints remote repositories. Default.

25

YARsync, Release 0.2.1

2.0.18 show

yarsync show [-h] commit [commit . . .]

Prints log messages and actual changes for commit(s). Changes are shown compared to the commit before commit. For
the output format, see status. Information for several commits can be requested as well.

commit : Commit name.

2.0.19 status

yarsync status [-h]

Prints working directory updates since the last commit and the repository status. If there were no errors, this command
always returns success (irrespective of uncommitted changes).

Output format of the updates

The output for the updates is a list of changes, including attribute changes, and is based on the format of rsync –itemize-
changes. For example, a line

.d..t...... programming/

means that the modification time ‘t’ of the directory ‘d’ programming/ in the root of the repository has changed (files
were added or removed from that). All its other attributes are unchanged (‘.’).

The output is an 11-letter string of the format “YXcstpoguax”, where ‘Y’ is the update type, ‘X’ is the file type, and
the other letters represent attributes that are printed if they were changed. For a newly created file these would be ‘+’,
like

>f+++++++++ /path/to/file

The attribute letters are: checksum, size, modification time, permissions, owner and group. u can be in fact use
(access) or creation time, or both. a stands for ACL, and x for extended attributes. Complete details on the output
format can be found in the rsync(1) manual.

2.0.20 SPECIAL REPOSITORIES

A detached repository is one with the yarsync configuration directory outside the working directory. To use such
repository, one must provide yarsync options –config-dir and –root-dir with every command (alias(1p) may be of
help). To create a detached repository, use init with these options or move the existing configuration directory manually.
For example, if one wants to have several versions of static Web pages, they may create a detached repository and publish
the working directory without the Web server having access to the configuration. Alternatively, if one really wants to
have both a continuous synchronization and yarsync backups, they can move its configuration outside, if that will work.
Commits in such repositories can be created or checked out, but pull or push are currently not supported (one will have
to synchronize them manually). A detached repository is similar to a bare repository in git, but usually has a working
directory.

A repository with a filter can exclude (disable tracking) some files or directories from the working directory. This
may be convenient, but makes synchronization less reliable, and such repository can not be used as a remote. See
rsync-filter in the FILES section for more details.

A repository can have a commit limit. The maximum number of commits can be set during commit. pull and push do
not check for missing commits on the destination when we are in a repository with commit limit. It makes a repository
with commit limit more like a central repository. If we have reached the maximum number of commits, older ones are

26 Chapter 2. Manual

YARsync, Release 0.2.1

deleted during a new commit. Commit limit is stored in .ys/COMMIT_LIMIT.txt. It can be changed or removed at
any time. Commit limit was introduced in yarsync v0.2 and was designed to help against the problem of too many
hard links (if it exists).

2.0.21 FILES

All yarsync repository configuration and data is stored in the hidden directory .ys under the root of the working direc-
tory. If the user no longer wants to use yarsync and the working directory is in the desired state, they can safely remove
the .ys directory.

Apart from the working directory, only commits, logs and synchronization data are synchronized between the reposi-
tories. Each repository has its own configuration and name.

User configuration files

.ys/config.ini : Contains names and paths of remote repositories. This file can be edited directly or with remote
commands according to user’s preference.

yarsync supports synchronization

only with existing remotes. A simple configuration for a remote “my_remote” could be:

[my_remote]
path = remote:/path/on/my/remote

Several sections can be added for more remotes.

An example (non-effective) configuration is created during init. Note that comments in config.ini can be erased during
remote {add,rm}.

Since removable media or remote hosts can change their paths

or IP addresses, one may use variable substitution in paths:

[my_drive]
path = $MY_DRIVE/my_repo

For the substitutions to take the effect,

export these variables before run:

$ export MY_DRIVE=/run/media/my_drive
$ yarsync push -n my_drive

If we made a mistake in the variable or path,

it will be shown in the printed command. Always use –dry-run first to ensure proper synchronization.

Another **yarsync** remote configuration option is **host**.

If both path and host are present, the effective path will be their concatenation “<host>:<path>”. Empty host means
local host and does not prepend the path.

27

YARsync, Release 0.2.1

It is possible to set default **host** for each section

from the section name. For that, add a default section with an option host_from_section_name:

[DEFAULT]
host_from_section_name

Empty lines and lines starting with \'**#**\' are ignored.

Section names are case-sensitive. White spaces in a section name will be considered parts of its name. Spaces around
‘=’ are allowed. Full syntax specification can be found at https://docs.python.org/3/library/configparser.html.

.ys/repo_<name>.txt : Contains the repository name, which is used in logs and usually should coincide with the remote
name (how local repository is called on remotes). The name can be set during init or edited manually.

Each repository replica must have a unique name.

For example, if one has repositories “programming/” and “music/” on a laptop “my_host”, their names would probably
be “my_host”, and the names of their copies on an external drive could be “my_drive” (this is different from git, which
uses only the author’s name in logs).

Note that **clone** from inside a repository

for technical reasons creates a temporary file with the new repository name (which is also written in
CLONE_TO_<name>.txt). If these files due to some errors remain on the system, they can be safely removed.

.ys/rsync-filter : Contains rsync filter rules, which effectively define what data belongs to the repository. The rsync-
filter does not exist by default, but can be added for flexibility.

For example, the author has a repository \"~/work\",

but wants to keep his presentations in “tex/” in a separate repository. Instead of having a different directory
“~/work_tex”, he adds such rules to rsync-filter:

all are in git repositories
- /repos
take care to sync separately
- /tex

In this way, \"~/work/tex\" and contained git repositories will be excluded

from “~/work” synchronization. Lines starting with ‘#’ are ignored, as well as empty lines. To complicate things, one
could include a subdirectory of “tex” into “work” with an include filter ‘+’. For complete details, see FILTER RULES
section of rsync(1).

While convenient for everyday use, filters make backup more difficult.

To synchronize a repository with them, one has to remember that it has subdirectories that need to be synchronized too.
If the remote repository had its own filters, that would make synchronization even more unreliable. Therefore filters
are generally discouraged: pull and push ignore remote filters (make sure you synchronize only from a repository with
filters), while clone refuses to copy from a repository with rsync-filter.

28 Chapter 2. Manual

https://docs.python.org/3/library/configparser.html

YARsync, Release 0.2.1

yarsync technical directories

.ys/commits/ : Contains local commits (snapshots of the working directory). If some of the old commits are no longer
needed (there are too many of them or they contain a large file), they can be removed. Make sure, however, that all
remote repositories contain at least some of the present commits, otherwise future synchronization will get complicated.
Alternatively, remove unneeded files or folders manually: commits can be edited, with care taken to synchronize them
correctly.

.ys/logs/ : Contains text logs produced during commit. They are not necessary, so removing any of them will not
break the repository. If one wants to fix or improve a commit message though, they may edit the corresponding log (the
change will be propagated during push). It is recommended to store logs even for old deleted commits, which may be
present on formerly used devices.

.ys/sync/ : Contains synchronization information for all known reposotories. This information is transferred between
replicas during pull, push and clone, and it allows yarsync repositories to better support the 3-2-1 backup rule.
The information is contained in empty files with names of the format commit_repo.txt. Pulling (or cloning) from a
repository does not affect its files and does not update its synchronization information. push (and corresponding clone)
updates synchronization for both replicas. For each repository only the most recent commit is stored. sync directory
was introduced in yarsync v0.2. See the release notes on how to convert old repositories to the new format or do it
manually, if necessary.

If a replica has been permanently removed, its synchronization data

must be removed manually and propagated with –force.

2.0.22 EXIT STATUS

0 : Success

1 : Invalid option

7 : Configuration error

8 : Command error

9 : System error

2-6,10-14,20-25,30,35 : rsync error

If the command could be run successfully, a zero code is returned. Invalid option code is returned for mistakes in
command line argument syntax. Configuration error can occur when we are outside an existing repository or a yarsync
configuration file is missing. If the repository is correct, but the command is not allowed in its current state (for example,
one can not push or pull when there are uncommitted changes or add a remote with an already present name), the
command error is returned. It is also possible that a general system error, such as a keyboard interrupt, is raised in the
Python interpreter. See rsync(1) for rsync errors.

2.0.23 DIAGNOSTICS

To check that your clocks (used for properly ordering commits) at different hosts are synchronized well enough, run

python -c 'import time; print(time.time())'

To make sure that the local repository supports hard links instead of creating file copies, test it with

du -sh .
du -sh .ys

29

YARsync, Release 0.2.1

(can be run during pull or clone if they take too long). The results must be almost the same. If not, you may not use
yarsync on this file system, have large deleted files stored in old commits or you may have subdirectories excluded
with a filter (see SPECIAL REPOSITORIES section).

To test that a particular file “a” was hard linked to its committed versions, run

ls -i a .ys/commits/*/a

If all is correct, their inodes must be the same.

Hard links can be broken in a cloned git repository (as it could happen with yarsync tests before), because git does not
preserve them. To fix hard links for the whole repository, run hardlink(1) in its root.

2.0.24 SEE ALSO

rsync(1)

The yarsync page is https://github.com/ynikitenko/yarsync.

2.0.25 BUGS

Requires a filesystem with hard links, rsync version at least 3.1.0 (released 28 September 2013) and Python >= 3.6.

Always do a –dry-run before actual changes. Occasionally Python errors are raised instead of correct return codes.
Please report any bugs or make feature requests to https://github.com/ynikitenko/yarsync/issues.

2.0.26 COPYRIGHT

Copyright © 2021-2023 Yaroslav Nikitenko. License GPLv3: GNU GPL version 3 https://gnu.org/licenses/gpl.html.
This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by
law.

30 Chapter 2. Manual

https://github.com/ynikitenko/yarsync
https://github.com/ynikitenko/yarsync/issues
https://gnu.org/licenses/gpl.html

CHAPTER

THREE

ADVANCED

3.1 Usage tips

Since yarsync allows using a command interface similar to git, one can synchronize several repositories simultane-
ously using myrepos.

If new data was added to several repositories simultaneously, commit the changes on one of them and synchronize that
with the another. rsync should link the working directory with commits properly. This may fail depending on how
you actually copied files (they may have changed attributes). In this case, create new commits in both repositories and
manually rename them to be the same. Try to synchronize to see that all is linked properly. For example, when we
move photographs from an SD card, we want to have at least two copies of them. It would be more reliable to copy
data from the original source to two repositories than to push that from one of them to another (possible errors on the
intermediate filesystem increase the risk). Make sure that the two repositories were synchronized beforehand.

3.2 Development

Community contributions are very important for free software projects. The best thing for the project on the starting
phase is to spread information and create packages for new operating systems.

yarsync was tested on ext4, NFSv4 and SimFS on Arch Linux and CentOS. Tests on other systems would be useful.

3.3 Hard links

The file system must support hard links if you plan to use commits. Multiple hard links are supported by POSIX-
compliant and partially POSIX-compliant operating systems, such as Linux, Android, macOS, and also Windows NT4
and later Windows NT operating systems [Wikipedia].

Notable file systems to support hard links include [hard links and comparison of file systems from Wikipedia]:

• EncFS (an Encrypted Filesystem using FUSE). Note that it doesn’t support hard links when External IV Chaining
is enabled (this is enabled by default in paranoia mode, and disabled by default in standard mode).

• ext2-ext4. Standard on Linux. Ext4 has a limit of 65000 hard links on a file.

• HFS+. Standard on Mac OS.

• NTFS. The only Windows file system to support hard links. It has a limit of 1024 hard links on a file.

• SquashFS, a compressed read-only file system for Linux.

Hard links are not supported on:

• FAT, exFAT. These are used on many flash drives.

31

https://myrepos.branchable.com/
https://en.wikipedia.org/wiki/Hard_link
https://en.wikipedia.org/wiki/Hard_link
https://en.wikipedia.org/wiki/Comparison_of_file_systems#File_capabilities
https://github.com/vgough/encfs/blob/master/encfs/encfs.pod
https://github.com/vgough/encfs/blob/master/encfs/encfs.pod
https://en.wikipedia.org/wiki/Hard_link#Limitations_of_hard_links
https://en.wikipedia.org/wiki/NTFS

YARsync, Release 0.2.1

• Joliet (“CDFS”), ISO 9660. File systems on CDs.

The majority of modern file systems support hard links. A full list of file system capabilities can be found on Wikipedia.

One can copy data to file systems without hard links, but this will reduce the functionality of yarsync, and one should
take care not to consume too much disk space if accidentally copying files instead of hard linking.

3.4 rsync limitations

• Millions of files will be synced very slowly.

• rsync freezes when encountering too many hard links. Users report problems for repositories of 200 G or
90 GB, with many hard links. For the author’s repository with 30 thousand files (160 thousand with commits)
and 3 Gb of data rsync works fine. If you have a large repository and want to copy it with all hard links, it is
recommended to create a separate partition (e.g. LVM) and copy the filesystem as a whole. You can also remove
some of older backups.

• rsyncmay create separate files instead of hard linking them. It can be fixed quickly using the hardlink executable.

3.5 Alternatives

Free software that uses rsync includes:

• Back In Time. See previous snapshots using a GUI.

• Grsync, graphical interface for rsync.

• LuckyBackup. It is written in C++ and is mostly used from a graphical shell.

• rsnapshot, a filesystem snapshot utility. rsnapshotmakes it easy to make periodic snapshots of local machines,
and remote machines over ssh. Files can be restored by the users who own them, without the root user getting
involved.

Other syncronization / backup / archiving software:

• casync is a combination of the rsync algorithm and content-addressable storage. It is an efficient way to deliver
and update directory trees and large images over the Internet in an HTTP and CDN friendly way. Other systems
that use similar algorithms include bup.

• Duplicity backs directories by producing encrypted tar-format volumes and uploading them to a remote or lo-
cal file server. duplicity uses librsync and is space efficient. It supports many cloud providers. In 2021
duplicity supports deleted files, full unix permissions, directories, and symbolic links, fifos, and device files,
but not hard links. It can be run on Linux, MacOS and Windows (under Cygwin).

• Git-annex manages distributed copies of files using git. This is a very powerful tool written in Haskell. It allows
for each file to track the number of backups that contain it and their names, and it allows to plan downloading
of a file to the local storage. This is its author’s use case: “I have a ton of drives. I have a lot of servers. I live
in a cabin on dialup and often have 1 hour on broadband in a week to get everything I need”. I tried to learn
git-annex, it was uneasy , and finally I found that it doesn’t preserve timestamps (because git doesn’t) and
permissions. If that suits you, there is also a list of specialized related software. git-annex allows to use many
cloud services as special remotes, including all rclone remotes.

• Rclone focuses on cloud and other high latency storage. It supports more than 50 different providers. As of 2021,
it doesn’t preserve permissions and attributes.

Continuous synchronization software:

• gut-sync offers a real-time bi-directional folder synchronization.

32 Chapter 3. Advanced

https://en.wikipedia.org/wiki/Comparison_of_file_systems#File_capabilities
https://www.resilio.com/blog/rsync-alternative
https://serverfault.com/questions/363670/rsync-avzhp-follows-hardlinks-instead-of-copying-them-as-hardlinks#comment1252592_363780
https://bugzilla.samba.org/show_bug.cgi?id=10678
https://jak-linux.org/projects/hardlink/
https://en.wikipedia.org/wiki/Rsync#rsync_applications
https://backintime.readthedocs.io/
http://luckybackup.sourceforge.net/manual.html
https://rsnapshot.org/
https://github.com/systemd/casync
https://github.com/systemd/casync#casync--content-addressable-data-synchronizer
https://bup.github.io/
http://www.nongnu.org/duplicity/
https://en.wikipedia.org/wiki/Duplicity_(software)
https://git-annex.branchable.com/
https://git-annex.branchable.com/testimonials/
http://git-annex.branchable.com/tips/centralized_git_repository_tutorial/on_your_own_server/#comment-29cc31b898ba34a1f59a96ba7b001e08
https://git-annex.branchable.com/todo/does_not_preserve_timestamps/
https://git-annex.branchable.com/bugs/assistant_doesn__39__t_sync_file_permissions/
https://git-annex.branchable.com/related_software/
https://git-annex.branchable.com/special_remotes/
https://git-annex.branchable.com/special_remotes/rclone/
https://en.wikipedia.org/wiki/Rclone
https://github.com/tillberg/gut

YARsync, Release 0.2.1

• Syncthing. A very powerful and developed tool, works on Linux, MacOS, Windows and Android. Mostly uses
a GUI (admin panel is managed through a Web interface), but also has a command line interface.

• Unison is a file-synchronization tool for OSX, Unix, and Windows. It allows two replicas of a collection of files
and directories to be stored on different hosts (or different disks on the same host), modified separately, and then
brought up to date by propagating the changes in each replica to the other (pretty much like other syncronization
tools work).

• Dropbox, Google Drive, Yandex Disk and many other closed-source tools fall into this cathegory.

ArchWiki includes several useful scripts for rsync and a list of its graphical front-ends. It also has a list of cloud
synchronization clients and a list of synchronization and backup programs. Wikipedia offers a comparison of file
synchronization software and a comparison of backup software. Git-annex has a list of git-related tools.

3.5. Alternatives 33

https://syncthing.net/
https://docs.syncthing.net/users/syncthing.html
https://www.cis.upenn.edu/~bcpierce/unison/
https://wiki.archlinux.org/index.php/Rsync
https://wiki.archlinux.org/index.php/Rsync#Front-ends
https://wiki.archlinux.org/index.php/List_of_applications/Internet#Cloud_synchronization_clients
https://wiki.archlinux.org/index.php/List_of_applications/Internet#Cloud_synchronization_clients
https://wiki.archlinux.org/index.php/Synchronization_and_backup_programs
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_backup_software
https://git-annex.branchable.com/not/

	Introduction
	Installation
	Design and features
	Commands
	Requirements and limitations
	Safety
	Documentation
	Thanks
	NAME
	SYNOPSIS
	DESCRIPTION
	QUICK START
	OPTION SUMMARY
	COMMAND SUMMARY
	OPTIONS
	COMMANDS
	checkout
	clone
	Positional arguments

	commit
	diff
	init
	log
	Options
	Example

	pull
	pull options
	pull and push options

	push
	remote
	add
	rm
	show

	show
	status
	Output format of the updates

	SPECIAL REPOSITORIES
	FILES
	User configuration files
	yarsync technical directories

	EXIT STATUS
	DIAGNOSTICS
	SEE ALSO
	BUGS
	COPYRIGHT
	Advanced
	Usage tips
	Development
	Hard links
	rsync limitations
	Alternatives

	Manual
	NAME
	SYNOPSIS
	DESCRIPTION
	QUICK START
	OPTION SUMMARY
	COMMAND SUMMARY
	OPTIONS
	COMMANDS
	checkout
	clone
	Positional arguments

	commit
	diff
	init
	log
	Options
	Example

	pull
	pull options
	pull and push options

	push
	remote
	add
	rm
	show

	show
	status
	Output format of the updates

	SPECIAL REPOSITORIES
	FILES
	User configuration files
	yarsync technical directories

	EXIT STATUS
	DIAGNOSTICS
	SEE ALSO
	BUGS
	COPYRIGHT

	Advanced
	Usage tips
	Development
	Hard links
	rsync limitations
	Alternatives

